THE STRUCTURE OF SOME TRANSITION METAL FLUORIDES

O. GLEMSER

Institut für Anorganische Chemie der Universität Göttingen Tammannstraße 4, D-3400 Göttingen (F.R.G.)

SUMMARY

The structures of the solid fluorides MF_2 , MF_3 , MF_4 and MF_5 , in which M has the coordination number 6 and belongs to the 3<u>d</u>, 4<u>d</u>- and 5<u>d</u>-periods and the Vb to VIII groups, can be divided into 3 types: (a) cubic close packing (<u>ccp</u>) of F with an M-F-M bridging angle of 180°; (b) hexagonal close packing (<u>hcp</u>) with an M-F-M-bonding angle of 132°; (c) intermediate packing between (a) and (b). The linear bridging is assumed to be a consequence of π -back bonding (or charge transfer) between <u>p</u>F-orbitals and <u>d</u>-orbitals of the metal. If such bonding is not possible then <u>hcp</u> with the bridging angle of 132° will result. Weaker π -interactions give the intermediates (c).

INTRODUCTION

The structures of the solid fluorides MF_2 , MF_3 , MF_4 and MF_5 , in which M is octahedrally coordinated and belongs to the 3d-, 4d- and 5d-periods and the Vb and VIII groups of the Periodic Table, can be considered from a general point of view as shown below. To a first approximation three types of structure may be distinguished:

0022-1139/84/\$3.00

© Elsevier Sequoia/Printed in The Netherlands

- 320
- Cubic close packing (<u>ccp</u>) with a M-F-M bridging angle of 180°
- Hexagonal close packing (<u>hcp</u>) with a M-F-M-bridging angle of 132°
- 3) A packing intermediate between 1) and 2) with a M-F-M bond angle of ca. 150°.

RESULTS AND DISCUSSION

How do these packing variants apply to the species considered?

Pentafluorides

In the solid state the transition metal pentafluorides form cyclic tetramers $(MF_5)_4$ and polymeric chains $(MF_5)_n$. Two different molecular structures are found for the tetramers (Fig. 1):

Fig. 1. Structures of the transition metal pentafluorides. From J.H. Canterford, R. Colton and T.A. O'Donnell, Rev. Pure and Appl. Chem. <u>17</u> (1967) 23. Small circles represent metal, large circles fluorine. (a) In the Nb, Ta, Mo and W species the four metal atoms are located at the corners of a square, linked via linearM-F-M bridges: The coordination octahedra are distorted.

(c) The cyclic structure of the $(MF_5)_4$ fluorides of the noble metals Ru, Rh, Os, Ir and Pt resembles that of (a), but the M-F-M bridges are non-linear with an angle of ca. 132°. The metal atoms are located at the corners of a rhombus and the octahedral coordination is distorted. In the other penta-fluorides (b), i.e. those of V, Cr, Tc and Re, the coordination octahedra are linked via <u>cis</u>-fluorine bridges to form endless chains [1].

Tetrafluorides, trifluorides and difluorides

The polymeric solid tetrafluorides $(MF_4)_n$ exhibit layer structures or three dimensional networks. The <u>ccp</u> arrangement with an M-F-M bridging angle of ca. 180° has so far only been found in the layer structure of NbF₄ which is iso-structural with SnF₄ and PbF₄. (NbF₄)_n has the same arrangement of layers as in NiF₄²⁻. A remarkable structure is found for IrF₄ (isostructural with RhF₄, PdF₄ and probably PtF₄): each IrF₆ octahedron shares four corners with other octahedra; the two <u>cis</u> corners remain unshared. The packing of the F atoms closely approaches <u>hcp</u>, and the M-F-M bridging angle is ca. 134°. The only known representative of an intermediate type of packing is probably polymeric VF₄ [2] with a layer structure [3].

Amongst the trifluorides NbF₃ and probably TaF₃ are known with \underline{ccp} (ReO₃ type) and an M-F-M bridging angle of ca. 180°. On the right-hand side of the periodic table we find RhF₃ and IrF₃ approaching <u>hcp</u>, and an M-F-M bridging angle of ca. 132°. RuF₃ can also be included, with a bridging angle of 136° and a structure resembling that of VF₃. PdF₃ is Pd²⁺Pd⁴⁺F₆. Once again the F atoms approach <u>hcp</u>. As three-dimensional polymers, the structures of TiF₃, VF₃, CrF₃, MnF₃, FeF₃, CoF₃, MoF₃ lie between these two extremes.

Finally, the difluorides MF_2 should also be mentioned. Except for Ti, all 3<u>d</u> metals are known to form difluorides with the rutile structure (<u>hep</u> with an M-F-M bridging angle of 132° as ideal case. CrF_2 and CuF_2 have Jahn - Teller distortion). Apart from ZrF_2 [4] and PdF_2 and AgF_2 [5] (rutile structure) there are no known 4<u>d</u> and 5<u>d</u> difluorides. Since fluorine is trigonally coordinated in the rutile structure, a direct comparison with the higher binary fluorides (in which F always has a coordination number of two or two an one in MF_5) is not possible.

Explanation of the occurrence of the various packing structures

In his book 'Structural Inorganic Chemistry' [1], A.F. Wells remarks: "There is an interesting connection, which is not understood, between the structures of these compounds and the position of M in the Periodic Table". This refers to MF_3 species, but also applies to MF_4 and MF_5 types. It is possible to understand this "interesting connection" by assuming the following model:

In transition metal fluorides with \propto <u>ccp</u> arrangement of F atoms and an M-F-M bridging angle of 180°, the linear bridge is consistent with π -back bonding of occupied <u>p</u>-orbitals of fluorine with \underline{t}_{2g} orbitals on the metal. If such bonding is not possible, the <u>hcp</u> with an M-F-M bridging angle of 132° will result. In the case of weaker π -back bonding interactions, we should have 'intermediate packing' with M-F-M bridging angles between 180° and 132°. The π -bonding reduces the stereo-chemical effect of the two lone-pairs on fluorine, and simultaneous π -bonding with both metal atoms is optimised when the M-F-M angle is 180°.

Some years ago it was suggested that this π -back bonding should play a role in the occurrence of linear M-F-M bridges in $(NbF_5)_4$ and $(MoF_5)_4$ [6], and has also been assumed in some 5<u>d</u>-hexafluorides such as WF₆ [7]. On the other hand it is possible to consider the π -back bonding as a charge transfer from F-<u>p</u> orbitals to metal <u>d</u>-orbitals as was deduced from

322

electron impact excitation spectra of WF₆ and UF₆ [8]. Bearing in mind that \underline{ccp} and \underline{hcp} do not differ much energetically, then even weak π -back bonding contributions will influence the packing of the F atoms. These weak back-bonding effects (or charge transfers) should not be ruled out for lower fluorides.

In order to improve our understanding of the bonding, let us examine Fig. 2, showing the 1-electron level diagram for

Fig. 2. One-electron energy-level diagram for a system with $\pi\text{-}\text{donor}$ ligands.

a π -system with a donor ligand. Electrons of the \underline{t}_{2g} orbitals are now in \underline{t}^*_{2g} orbitals, and hence at a higher energy level. Since the level of the \underline{e}_g orbitals remains unaffected by π -interaction, Δ_0 is lowered. In other words $F + M \pi$ -back bonding destabilizes the \underline{t}^*_{2g} orbitals. The energy level diagram applies only to discrete molecules or complex ions. In the case of oligomers such as $(MF_5)_4$ or polymers like $(MF_5)_n$, $(MF_4)_n$, $(MF_3)_n$ and $(MF_2)_n$, the energy levels become energy bands. Their calculation is however difficult. The contribution of this kind of π -back bonding to the overall bonding decreases by the same extent as the occupation of the antibonding \underline{t}^*_{2g} orbitals increases. It should further be noted that for a given group of transition metals Δ_0 increases from 3<u>d</u> via 4<u>d</u> to 5<u>d</u> by about 40% each time. Δ_0 further increases as the oxidation number of a given metal atom increases. This is why high-spin species are expected in the 3<u>d</u>-series and low-spin species in the 4<u>d</u>- and 5-series.

 π -F + M back bonding is anticipated at low occupations of \underline{t}^*_{2g} orbitals with electrons, i.e. at the beginning of the <u>d</u>-series of the periodic classification (it should be remembered that we are considering only fluorine species with coordination number 6 for the metal). π -F + M back bonding is most favorable in the 5<u>d</u>-series, and far less so in the 3<u>d</u>-series; the 4<u>d</u>-series occupy an intermediate position.

The model of π -F \rightarrow M back bonding presented here is in accord with species occurring in the various groups and d-series. We can understand why NbF₂ is <u>ccp</u> with the ReO₂ structure, and why MoF_3 is not. However, as soon as MoF_3 contains a little oxygen, as was apparently the rule in earlier preparations, then the population of the electrons in the $\underline{t}^{\star}_{2q}$ orbital decreases and the charge on the central atom becomes higher; Δ_0 increases and the occurrence of the ReO3-type may be accounted for. Let us again consider the niobium fluorides $(NbF_3)_n$, $(NbF_4)_n$ and $(NbF_5)_4$ in Group V, and the iridium fluoride $(IrF_3)_n$, $(IrF)_n$ and $(IrF_5)_4$ in Group VIII. The niobium fluorides mentioned all have approximately ccp F-atoms with a bridging angle Nb-F-Nb of ca. 180°, and the iridium fluorides approximately hcp F-atoms with a bridging angle of ca. 132°. In both groups the structural arrangement occurs despite the different charge of the metal atoms.

CONCLUSION

"The precise nature of the anion packing is of interest, since it determines the M-F-M angle", Wells writes in his book cited above [1]. But it may well be the M-F-M angle which determines the anion packing.

324

ACKNOWLEDGEMENT

I thank Prof. Sheldrick, Göttingen, for helpful discussions and the Herbert-Quandt Stiftung for support.

REFERENCES

- 1 A.F. Wells, Structural Inorganic Chemistry, 4th ed., Clarendon Press, Oxford 1975, p. 350 ff.
- 2 A.J. Edwards, P. Taylor, Chem. Commun. 1970, 1474
- 3 MnF_4 : trigonal: a = 34.1; c = 9.09 Å. B.G. Müller, Abstracts 6. Europ. Fluor-Symp. Dortmund 1977, J 51 The structure of CrF_4 is probably similar to the tetrafluorides of titanium and vanadium, that is, chains of CrF_6 units joined by shared edges: R. Colton and J.H. Canterford, Halides of the First Row Transition Metals, Wiley Interscience, London, New York, Sidney, Toronto, 1969
- 4 F.K. Taggert, A.G. Turnbull, Austral. J. Chem. <u>17</u>, 727 (1964)
- 5 P. Fischer, D. Schwarzenbach, H.M. Rietveld, J. Phys. Chem. Solids 32, 543 (1971)
- 6 J.H. Canterford, R. Colton and T.A. O'Donnell, Rev. Pure and Appl. Chem. <u>17</u>, 123 (1967)
- 7 N. Bartlett, Angew. Chem. Intern. Ed. 7, 433 (1965)
- 8 R. Rianda, R.P. Frueholz and A. Kuppermann, J. Chem. Phys. 70, 1056 (1979)